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CHARACTERISTICS OF A BLUNT-NOSED, BOATTAITXD, 

13' HALF-CONE AT MACH NUMBERS FROM 0.6 TO 5 .O* 

By John V.  Rakich 

SUMMARY 

An atmosphere-entry configuration developing t r i m  l i f t -drag  r a t io s  
of about 1 . 2  a t  supersonic speeds was investigated experimentally a t  angles 
of attack t o  15' a t  transonic speeds and t o  54' a t  supersonic speeds. 
configuration w a s  essent ia l ly  one-half of a 13' half-angle cone with a 
blunted nose and a boat ta i led afterportion t o  which were added a canopy 
and a p a i r  of ve r t i ca l  s tab i l iz ing  f ins .  The e f f ec t s  of pi tch,  yaw, and 
roll controls were a l s o  investigated. 

The 

Primary at tent ion w a s  d i rected toward the  performance, trim, and 
s t a t i c - s t ab i l i t y  character is t ics  a t  supersonic speeds f o r  model attitudes 
from nearly zero t o  maximum l i f t .  Also, s t a t i c  s t a b i l i t y  and controllabil-  
i t y  a t  transonic speeds were investigated. Iiesuits indicated that t'ne 
configuration without controls had sa t i s fac tory  supersonic character is t ics  
although it w a s  longitudinally unstable a t  transonic speeds. The configu- 
ra t ion  complete with controls could be trinrmed, at supersonic speeds, over 
a wide range o f  a t t i t udes  including t h a t  f o r  maximum l i f t - d r a g  r a t i o  and 
t h a t  f o r  maximum l i f t  coefficient.  I n  general, a combination o f  elevons 
and p i tch  f laps  appeared adequate t o  provide t r i m  with longitudinal 
s t a b i l i t y  throughout the range of t e s t  Mach numbers from 0.6 t o  5.0. 

INTRODUCTION 

Research in to  the problems associated with manned atmosphere-entry 
vehicles has l ed  t o  the  study of  a wide var ie ty  of b a l l i s t i c  and l i f t i n g  
configurations. Among these,  the  high-lif t ,  high-drag configuration 
proposed by Eggers and Wong has been the subject of de ta i led  investigations 
(see, e .g., refs. 1 t o  6 ) .  It has been found t h a t  t h i s  blunted 30' 
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half-cone develops a maximum l i f t - d r a g  r a t i o  of about 0.5 a t  supersonic 
speeds. With t h i s  l i f t -drag  r a t i o  appropriately applied during entry from 
s a t e l l i t e  o rb i t ,  the  configuration is capable of providing about 200 
naut ical  miles of l a t e r a l  range ( re f .  7 ) .  However, since grea te r  maneu- 
verabi l i ty  may sometimes be desirable ,  a 13' half-cone which developed a 
l i f t - b a g  r a t i o  of about 1.3 a t  supersonic speeds (equivalently, 1000 
naut ical  miles of l a t e r a l  range) was investigated i n  reference 8.  
currently, t h i s  slender half-cone was modified by boa t ta i l ing  the  a f t e r -  
portion ( r e f s .  9 and 10) t o  provide adequate performance and longitudinal 
s t a b i l i t y  f o r  a horizontal  landing. 
g rea t ly  improved the  performance a t  low speeds while the  lift-drag r a t i o  
a t  supersonic speeds was e s sen t i a l ly  unaffected. 

Con- 

It w a s  found that these modifications 

Although many features of the boa t ta i led  half-cone were presented i n  
reference 9, t h a t  paper represented o n l y  a preliminary evaluation of the 
configuration. For example, aerodynamic charac te r i s t ics  near maximum l i f t  
were not presented. More complete t e s t s  with t h i s  configuration have since 
been conducted and the r e su l t s  a r e  the subject of the present paper. 
Longitudinal and la te ra l -d i rec t iona l  charac te r i s t ics  a re  presented f o r  
Mach numbers from 0.6 t o  5.0 .  Attention i s  given t o  the  trim characteris-  
t i c s  near maximum lift at  Mach numbers of 3 .O and 5.0. It should be noted 
t h a t  more complete r e su l t s  fo r  Mach numbers from 0.25 t o  0.92 a re  presented 
i n  reference 11. 

Aerodynamic forces and moments were reduced t o  standard coeff ic ient  
form. A l l  forces and moments were referred t o  body axes with the exception 
of l i f t  and drag coeff ic ients  which were referred t o  s t a b i l i t y  axes. 
Coefficients include the  e f f ec t s  of base pressure; t h a t  is, the  data  were 
not corrected t o  free-stream s t a t i c  base pressure. The symbols used i n  
t h i s  report a re  defined a s  follows (see f i g .  1 a l s o ) .  

A aspect r a t io ,  - b2 (0,675) 
S 

A' aspect r a t i o  including elevons, 
S + 2Se 

b 

be 

width (span) of model a t  t he  base, not including elevons 

width (span) of  a s ingle  elevon 

axial force 
qs 

axial-force coeff ic ient ,  C A 

A 
4 
8 
6 
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CD 

c t  

CL 

c, 

Cn 

CY 

L 
D 
- 

1 

M 

Pt 

P 

9 

Re 

S 

Se 

s, 
Tt 

X 

Y 

drag coefficient, drag ¶.s 
rolling moment rolling-moment coefficient, 

(4% 

lift lift coefficient, - 
qs 

pitching moment pitching-moment coefficient, 
qs z 

yawing moment yawing-moment coefficient, 
q=J 

normal force normal-force coefficient, 
qs 

p b - p  base-pressure coefficient, - 
q 

side force side-force coefficient, 
qs 

lift-drag ratio 

body length 

free-stream Mach number 

total pressure 

free-stream static pressure 

free-stream dynamic pressure 

Reynolds number 

body plan-form area (not including elevons) 

area of a single elevon 

body base area 

total temperature 

distance from model nose along cone axis 

radial distance perpendicular to cone axis 

-mmimb 
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a 

P 

6 

a 

a 

P 

b 

e 

P 

Y 

angle of a t tack  (with respect t o  the  cone ax is )  

angle  of  s ides l ip  

control deflection angle (see f i g .  1) 

incremental value due t o  controls 

deri rat ive 

Subscripts 

rith respect t o  angle of a t tack  

derivative with respect t o  angle of s ides l ip  

base 

elevon 

pitch f l ap  

y a w  f l ap  

A 
4 
8 
6 

EXPERIMENT 

Models 

The wind-tunnel models were essent ia l ly  one-half of a 13' half-angle 
cone w i t h  a spherically blunted nose. Geometric de t a i l s  of the models are  
given i n  figure 2, and photographs of a typ ica l  model configuration are 
shown i n  figure 3 (a ) .  
continuously varying curvature a t  the sphere-cone juncture. The after- 
portion of the  undersurface p ro f i l e  i n  the plane of symmetry consisted o f  
a c i rcular  a r c  tangent t o  the cone a t  0.6 body length from the  nose. 
Cross sections were specified a t  several  s ta t ions  af t  of 0.6 of  t h e  body 
length, and the body w a s  smoothly faired between these s ta t ions .  The 
curved portion of the  upper surface w a s  described by a c i rcu lar  a rc .  
teardrop canopy w a s  a segment of a hemisphere cylinder. Vertical  stabi-  
l i z ing  f i n s ,  with 3' toe-in, were added t o  t he  boat ta i led body t o  complete 
the  basic model configuration. Removable, f ixed angle p i tch  f laps ,  yaw 
f laps ,  and elevons were tes ted  i n  various combinations. 

The nose w a s  modified s l i g h t l y  so as  t o  provide a 

The 

Three models were constructed t o  allow t e s t ing  over a wide range of 
angles of a t tack .  
angles of a t tack  up t o  20'. It was possible t o  in se r t  the  force balance 
into the base of t h i s  model without modifying the  model surface.  

The l a rges t  model (model 1) ( f i g .  3(a) ) w a s  t e s t ed  a t  

For tests 
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a t  angles of a t tack from 17' t o  32O, a smaller model w a s  used (model 2) 
( f i g .  3 (b) )  which had a protuberance on the  top t o  provide suf f ic ien t  
volume for inser t ion of the  balance into the model pa ra l l e l  t o  t he  cone 
ax is .  The balance w a s  inserted into model 3 a t  a 50' angle with the cone 
axis  ( f i g .  3 ( c ) >  for t es t s  a t  angles o f  a t tack from 32' t o  54'. 
effects  of protuberances similar t o  those of models 2 and 3 were investi-  
gated i n  reference 12 ,  and were found t o  be small f o r  the Mach numbers and 
angles of a t tack  a t  which the models were tes ted .  

The 

A boundary-layer t r i p  w a s  used on t h e  model tes ted  a t  transonic 
speeds. The t r i p  w a s  formed with a 0.010-inch diameter wire cemented 
around the  nose a distance 0.10 body length from the  t i p  of the nose. 

Tests 

Tests were conducted i n  the Ames 2- by 2-Foot Transonic Wind Tunnel 
(ref. 13), a t  Mach numbers from 0.6 t o  1.3, and i n  the Ames 10- by 14-Inch 
Supersonic Wind Tunne l  (ref 1 4 ) ,  at Mach numbers from 3 .O t o  5 .O. 
tunnel t e s t  conditions, angles of attack, and angles of s ides l ip  are 
tabulated below. 

Wind- 

1 .o 
1.1 

"For 

-1 t o  15 

1 
-4 t o  54 
-4 t o  15 
-4 t o  54 

*5 

1 
k4 
32 
+2 

5 *2  
4.1 
4 .O 
3-9  
3 -9 

ai?-22 
87 
87 

70 

1 
50 
50 

200 

Re/2,  f t - l  

1. 25><10g 

'2 .6-3 .8x106 
8. 9noS  
3 .8><106 

models tes ted  a t  angles of a t tack  greater  
than 32O. 

Procedure 

Aerodynamic forces and moments were measured with a conventional, 
six-component, strain-gage balance. P a r t  of the  balance system w a s  inside 
the models and p a r t  protruded rearward t o  the sting-support system. The 
external  portions of the  balance were shrouded t o  prevent the  d i r ec t  action 
of the  aerodynamic forces on the balance. 
Eodels were measured with a strain-gage pressure cel l ;  however, these 
pressures were not used t o  correct the aerodynamic forces and moments. 
All results presented therefore include the e f f ec t s  of base drag and 
s t ing  interference.  

Base pressures acting on the 
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Accuracy 

Estimated maximum uncertaint ies  i n  the -est  results are as f 
0 Angles +o .2 

Mach numbers 0.6 t o  1.3 33.01 
Mach numbers 3.0 t o  5.0 k O . 1 0  
Force coefficients k O  .01 
Moment coeff ic ients  k0.00.5 
Stab i l i t y  der ivat iqes  +O .OOO5 per  deg 

llc rs : 

It should be noted t h a t  the  control da ta  were obtained with the  l a rges t  
model and, therefore,  these incremental experimental r e s u l t s  are i n  e r ro r  
by l e s s  than the  above estimates. 

RESULTS AND DISCUSSION 

Presentation of Results 

Nomenclature .- The f i r s t  pa r t  of t h i s  investigation w a s  concerned 
with determining the aerodynamic charac te r i s t ics  of the boat ta i led,  half-  
cone body with ve r t i ca l  f i n s  and canopy added. 
t i o n  and discussion, t h i s  basic  model w i l l  be referred t o  as the clean 
configuration; more expl ic i t ly ,  the  t e r m  "clean" w i l l  imply the  model 
configuration with elevons removed and w i t h  p i tch  and yaw f l aps  
undeflected. 

In  the  following presenta- 

Individual control charac te r i s t ics  were obtained by t e s t ing  separately 
Incre- the pi tch f l aps ,  yaw f laps ,  and elevons on the  clean configuration. 

mental coefficients for  the controls were obtained by comparison of the 
control data with data previously obtained f o r  the clean configuration. 
For exanrple, the normal-force increment due t o  an elevon w a s  determined 
from the re la t ion  x N e  = (CN)with - ( cN) clean - 

elevon 

Two par t icu lar  control combinations were t e s t ed  on the clean configu- 
ra t ion  t o  demonstrate typ ica l  t r i m  aerodynamic charac te r i s t ics  a t  widely 
different  model a t t i tudes .  
referred t o  as (1) the configuration f o r  small-angle t r i m  (both elevons 
a t  -10' and both p i t ch  f laps  a t  35'), and (2) the  configuration f o r  large- 
angle t r i m  (both elevons a t  -4.0' and p i t ch  f laps  undeflected) . 

The resu l t ing  model configurations w i l l  be 

Presentation.- The longitudinal charac te r i s t ics  of the clean configu- 
ra t ion  are presented i n  f igures  4 through 10, and of the  trimmed configura- 
t ions  i n  f igures  11 through 14. 
f o r  angles of a t tack  from -10 t o  +15O; data  f o r  supersonic speeds a re  

Data fo r  transonic speeds are presented 

e 

A 
4 
8 
6 
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presented fo r  angles of a t tack from -4' t o  +16O a t  Mach rider 4.0 and 
from -4' t o  t-54' a t  Mach numbers 3.0 and 5.0 .  
a r o - i d  the t r i m e d  conf igna t ions  at a YIch Elmbey of 5.0 a re  shown in  
figure 15. 

Shadowgraphs of the  flow 

The la te ra l -d i rec t iona l  character is t ics  of each model configuration 
tes ted  a re  presented i n  tab le  I; l i s t ed  a re  the der ivat ives  Cy@, CnP 
and C z  
data  were obtained were previously noted. Note t h a t  t ab le  I includes 
la te ra l -d i rec t iona l  da ta  f o r  models with various controls.  

evaluated at zero s ides l ip  angle. Sidesl ip  angles f o r  which the  P' 

The control charac te r i s t ics  obtained from t e s t s  a t  zero s ides l ip  angle 
a re  presented in  tab les  11, 111, and IV fo r  p i t ch  f laps ,  y a w  f laps ,  and 
elevons, respectively.  Note t h a t  these data  a re  presented i n  incremental 
form. 
Data are  given f o r  the starboard yaw f lap or elevon, and f o r  pa i r s  of 
p i tch  f laps .  

These charac te r i s t ics  were obtained a t  angles of a t t ack  t o  16'. 

Character is t ics  of Clean Configuration 

Longitudinal s tab i l i ty . -  Pitching-moment coeff ic ients  fo r  the clean 
configuration may be seen i n  f igure 4. 
body length a f t  of the nose and 0.07 body length below the cone ax is .  For 
t h i s  moment center, the clean configuration w a s  s l i g h t l y  unstable i n  pi tch 
f o r  Mach numbers from 0.6 t o  1 . 3  ( f ig .  &(a)) .  
5 .O the  configuration was s l igh t ly  unstable a t  angles of a t tack  below 
a7Do.ut g o ,  =..A ---I -1,l.l uub w a 3  PbauLe zb raL5Gl a r l ~ l e ~  =f a t tack  t o  54' ( f i g ;  4(b!) - 
The increase i n  s t a b i l i t y  a t  large angles of a t tack  w a s  apparently due t o  
the  longi tudinal ly  curved undersurface. This point can be qua l i ta t ive ly  
discussed with the help o f  Newtonian impact theory. 

The moment center assumed i s  0.55 

For Mach numbers 3.0 and 

+ l,nnr,-" '-,-,-. 

Near zero angle of a t tack  the afterportion of the undersurface i s  
shielded in  the Newtonian sense and, accordingly, the surface pressure of 
the shielded region approaches the free-stream pressure. The higher pres- 
sure on the portion of the undersurface forward of  the moment center thus 
combines with the nose drag t o  produce a posi t ive pitching moment. As the  
angle of a t tack  i s  increased, the afterportion of the undersurface becomes 
completely unshielded a t  about 15' angle of a t tack  and the l o c a l  pressure 
coeff ic ient  increases approximately as sinZ(a - 15) .  Because of t h i s  
var ia t ion,  the contribution of the aftersurface is not appreciable unless 
u For the  present configuration the pres- 
6 - i e  acting on the  a f te rsmface  appears t o  becoze s igni f icant  a t  about 30' 
angle of attack. 
on the boat ta i led region, coupled with the  l a rge r  area a f t  of the mment 
center,  has an increasing e f fec t  which accounts f o r  the increase in  
s t a b i l i t y .  

i s  somewhat grea te r  than 15'. 

A t  angles of attack somewhat greater  than 30' the loading 
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It is apparent f r o m  f igure 4(b) t h a t  a t  Mach number 3.0 the clean 
configuration possessed some longitudinal s t a b i l i t y  a t  the t r im angle 
of 4 5 O .  
trim over a wide range of angles of a t tack .  However, f o r  s tab le  trim 
conditions at angles of a t t ack  l e s s  than about 30°, an increment of longi- 
tud ina l  s t a b i l i t y  would have t o  be provided by the controls,  or the  moment 
center would have t o  be moved forward. The e f f ec t s  of controls i n  t h i s  
regard w i l l  be discussed subsequently. 
e f f ec t s  o f  a s h i f t  i n  the moment center on the longitudinal s t a b i l i t y  of 
the clean configuration. 
moment data fo r  a moment center 10 percent of the body length ahead of the 
reference center given above. 
trimmed near zero angle of a t tack  f o r  Mach numbers from 3.0 t o  3.0, and 
near maximum l i f t -drag  r a t i o  f o r  Mach number 0.6. 
remaining tes t  Mach numbers of 0.9, 1 .0 ,  1.1, and 1.3, trim points with 
s tab le  slopes were not a t ta ined  i n  the t e s t  range of angles of a t tack.  

Further, only smal l  control moments would be required to provide 

It is  of i n t e re s t  t o  consider the 

I l l u s t r a t ed  i n  f igure 16 are  f a i r ed  pitching- 

With t h i s  center the clean configuration was 

However, f o r  the 

Lateral-directional s t ab i l i t y . -  Variations with angle o f  a t tack  of 
the l a t e ra l -  and d i rec t iona l -s tab i l i ty  der ivat ives  of the clean configura- 
t i o n  were, i n  general, r e l a t ive ly  small. This i s  i l l u s t r a t e d  f o r  Mach 
number 5.0 i n  f igure 17 (a ) .  In  contrast ,  the  var ia t ions with Mach nuniber, 
shown i n  f igure 17(b) fo r  7.2' angle of a t tack  were la rge ,  especial ly  i n  
the  transonic speed range. The unstable charac te r i s t ics  indicated i n  the 
data of figure 17(b) a re  representative of mos t  of the data shown i n  tab le  
V; t h a t  is, all data f o r  Mach number 1.0 and the data f o r  14' angle of 
a t tack,  Mach number 0.9. A t  these t e s t  conditions the clean configuration 
w a s  consistently unstable fo r  small angles of s ides l ip ,  and was usually 
s tab le  a t  s ides l ip  angles l a rge r  than about 2'. 
i n s t ab i l i t y  a t  small angles was not established. 
i n  figure 18. 
f igure l7(b)  were obtained. 
remaining data  at these t e s t  conditions; but f o r  reference purposes, all 
data showing s imilar  charac te r i s t ics  a re  presented in  tab le  V.  

The reason f o r  t h i s  
Typical data a re  shown 

These a re  the data from which the derivatives presented i n  
Derivatives were not evaluated f o r  the 

The ef fec t  of the v e r t i c a l  f i n s  on the  l a t e r a l  and d i rec t iona l  s tab i l -  
i t y  w a s  determined a t  Mach numbers 3.0 ,  4.0,  and 5.0 on ly .  
direct ional  charac te r i s t ics  of the clean configuration without f i n s  a re  
presented i n  tab le  I. A s  would be expected, the f i n s  improved the direc- 
t i o n a l  s t a b i l i t y .  It is a l so  in te res t ing  t o  note t h a t  the dihedral e f fec t  
w a s  essent ia l ly  unchanged by removal of the fins. 

Lateral- 

Performance .- M a x i m u m  l i f t -drag  r a t i o s  and l i f t  coeff ic ients  a t  10' 
angle of a t tack (which corresponds approximately with maximum l i f t -drag  
r a t i o )  are shown in  f igure 19 f o r  the clean configuration and f o r  the 
modified half-cone of reference 8. Character is t ics  a t  transonic speeds 
f o r  the modified half-cone were obtained during the present investigation 
and a re  presented i n  the appendix. A s  shown in  f igure 19 ,  the  boat ta i l ing 
had l i t t l e  e f f ec t  on the l i f t  and drag charac te r i s t ics  a t  supersonic speeds 

A 
4 
8 
6 

. 
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and on the l i f t  a t  transonic speeds. However, f o r  Mach nmibers l e s s  than 
1.0 the boat ta i led model had substantially grea te r  l i f t -drag  r a t i o s  than 
the l a rge r  based model. 

Also shown i n  f igure 19 is the maximum lift-drag r a t i o  obtained i n  
reference 11 for  the clean configuration a t  a Mach number o f  0.6. The 
present data indicate a maximum l i f t -drag r a t i o  about 10 percent lower 
than t h a t  of reference ll. 
present t e s t  a t  angles of a t tack between about 5' and 12O (% = 0.28 
t o  0.45). "he higher drag is at t r ibuted t o  viscous e f f ec t s  associated 
with the low Reynolds number o f  the present t es t  (about 0.6 mill ion as  
compared t o  5 million f o r  r e f .  LL). 

This difference is  due t o  la rger  drag i n  the 

It should a l s o  be noted tha t  the performance a t  transonic speeds may 
have been affected by s t ing  interference. 
15, it is indicated t h a t  the measured maximum l i f t - d r a g  r a t i o  a t  Mach 
number 1 .0  may be about 7 percent high as  a r e s u l t  of t h i s  e f f ec t .  
interference e f f ec t s  therein tended t o  decrease a t  higher o r  lower Mach 
numbers; f o r  t h i s  reason r e su l t s  a t  Mach number 0.6 and at Mach numbers 
of 3.0 or greater  a re  believed t o  be unaffected by s t ing  interference.  

From the  r e s u l t s  of reference 

Sting- 

Control Characterist ics 

Pi tch flaps.- The character is t ics  of the p i tch  f l aps  a re  i l l u s t r a t e d  
i n  f igure 20, where representative data f romtab le  I1 are  shown. The 
var ia t ions of E m  
generally mintained or, f o r  soEe cozc t ions ,  Iccreased the a t a b i l i t y  of 
the model ( i . e . ,  increased -C%). It is  a l s o  indicated t h a t  the effec- 
t iveness of the p i tch  f laps  decreased with increasing Mach numbers above 
1.0. In sp i t e  of t h i s  decrease, however, the data  f o r  a Mach number o f  
3.0 indicate  t h a t  a f l ap  def lect ion of about 45' provided a moment contri- 
bution suf f ic ien t  t o  trim the clean configuration a t  about -1' angle of  
a t tack  (CL 0.05) . 

with angle of attack indicate t h a t  t he  p i tch  f laps  

Yaw f laps . -  Representative resu l t s  for the  yaw f laps ,  taken from 
t ab le  111, are  shown i n  figure 21. The yaw f laps  appeared adequate t o  
trim the configuration a t  smal l  angles of s ides l ip .  For e x a q l e ,  fo r  a 
Mach number of 5.0 the  yawing moment for the  clean configuration a t  2 O  

s ides l ip  was about 0.0014 ( f i g .  l7), which is l e s s  than 20 percent of the 
moment increment due t o  the 30° yaw flap ( f i g .  21(a))  - Rolling moments 
due t o  y a w  f lap  deflections were small a t  all Mach numbers ( tab le  111). 

Axid-force increments due t o  y a w  f l ap  def lect ions ( f i g .  21(b) ) 
provided s ignif icant  decreases i n  l i f t -drag r a t i o .  For example, with two 
y a w  f laps  deflected 30' the  maximum lif t-drag r a t i o  of the  clean configura- 
t i on  a t  supersonic speeds was reduced from about 1.3 t o  1.1. It should 
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also be noted t h a t  a decrease i n  axial force occurred a t  Mach n-aiber 1 .0  
with increased def lect ion angle from 20' t o  30'. 
l e a s t  i n  par t ,  t o  a corresponding increase i n  base pressure.  

This e f f ec t  was due, a t  

Elevons.- Typical rolling-moment increments due t o  the elevons a re  
shown in  f igure 22. 
represents the ro l l ing  moment about an axis i n  the plane of the elevon, 
and the abscissa (a + 6,) represents the  angle of a t tack  of the elevon with 
respect to  the f ree  stream. When p lo t ted  i n  t h i s  manner, the characteris-  
t i c s  of the elevons estimated with Newtonian impact theory a re  represented 
by a single curve. 

In  this presentation the ordinate ( E z / c o s  6e) 

The a b i l i t y  of the  elevons t o  produce ro l l i ng  moments can be illus- 
t r a t e d  by considering a d i f f e r e n t i a l  def lect ion of r i gh t  and l e f t  elevons 
from the trimmed s e t t i n g .  Data i n  f igure 2g for a Mach number of 5.0 and 
an angle of a t tack of 7 O  indicate t h a t  a 40 
( r igh t  elevon a t  10' and l e f t  elevon a t  -30') produced a rolling-moment 
coefficient of -0.013. 
fo r  the c l ean  configuration a t  -2' s ides l ip  ( f i g .  1 7 ) -  
t o  t h i s  bo d i f f e r e n t i a l  def lect ion were obtained from the  data  of tab le  
I V ,  and are shown in  f igure 23. The yawing moments shown are  small a t  a 
Mach number of 5 ,  but a re  r e l a t ive ly  large a t  transonic Mach numbers. 
coupling is  adverse i n  the sense t h a t  an attempt t o  counteract a posi t ive 
roll ra te  r e su l t s  in  a posi t ive yawing moment. While the control cross- 
coupling appears t o  be s m a l l  a t  supersonic speeds i n  the example c i ted  
above, such e f f ec t s  can be expected t o  be more pronounced a t  l a rge r  angles 
of attack. This can be visualized by considering an extreme case with the 
configuration at  90' angle of a t tack and the elevons a t  -9' deflect ion.  
Clearly, perturbations of the elevons about t h i s  posi t ion would primarily 
r e s u l t  in yawing moments. 

d i f f e r e n t i a l  def lect ion 

This moment can be compared with a value of 0.0036 
Yawing moments due 

This 

Interactions between controls.- Determination of control interact ions 
was not a primary objective of the present t e s t .  
obtained which allow a cursory examination of these e f f e c t s -  
l a r ,  the data  obtained with the p i tch  f laps  and elevons individually can 
be compared with the data  f o r  the trimmed configurations on which the 
controls were used i n  combination. To i l l u s t r a t e  such e f f ec t s ,  pitching 
moments were computed for the configuration f o r  small-angle t r i m ,  f o r  
Mach numbers from 0.6 t o  1.3, based on the  data  obtained f o r  the  individual 
controls ( f i g .  4 and tab les  I1 and IT). 
shown i n  f igure ll(a) as shaded symbols. I n  most instances control data i n  
combination with the data f o r  the  clean configuration provided reasonably 
accurate estimates of the  pitching moments of the  trimmed configuration. 

However, some data were 
In particu- 

Results of these calculations a re  

It is  observed t h a t  because of the  proximity of the  yaw f laps  t o  the 
elevons, interact ions between them would be expected t o  be l a rge r  than 
those between the p i t ch  f laps  and the  elevons; however, such interact ions 
were not investigated.  
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Characterist ics o f  Trimed Configurations 

A 
4 

6 
a 

It w a s  indicated i n  a previous section of t h i s  paper t h a t  two trimmed 
configurations were tes ted  t o  i l l u s t r a t e  typ ica l  t r i m  charac te r i s t ics .  
These a re  the configuration fo r  small-angle t r i m  (elevons at -10' and 
p i tch  f laps  at  35') and the configuration f o r  large-angle t r im (elevons 
a t  -h0 and p i tch  f laps  undeflected) . Control se t t ings  which characterize 
these configurations were selected with the use of data  obtained with the  
clean configuration i n  combination with individual controls.  The configu- 
ra t ion  f o r  small-angle t r i m  w a s  intended t o  t r i m  near maximum lift-drag 
r a t i o  for Mach numbers of 3.0 t o  5.0. The configuration f o r  large-angle 
t r i m  w a s  intended t o  t r im near maximum l i f t  f o r  Mach numbers from 3.0 t o  
5 .O. 
configurations, taken from f igures  11, 12, and 13,  and table I, are summa- 
r ized i n  figures 24 and 2.5. It should be noted t h a t  some extrapolation of 
the  tes t  r e su l t s  w a s  necessary t o  obtain these summarized results f o r  Mach 
numbers 1 .0  and 1.3. 
2' t o  3' below the range o f  t e s t  angles of  a t tack.  
i n  f igures  24 and 25 were obtained, for these cases, with the  a i d  of a 
short  and l i nea r  extrapolation of the pitching-moment curves ( f i g .  l l ( a ) )  . 

Sta t i c  s t a b i l i t y  and performance character is t ics  of these two trimmed 

A t  these Mach numbers the trim points appear t o  be 
The results presented 

Stabi l i ty . -  A s  shown i n  f igure 24, both trimmed configurations were 
longitudinally s table  a t  supersonic speeds. 
na l  da ta  are  shown only f o r  the configuration f o r  small-angle t r i m  and 
show t h i s  configuration t o  be longitudinally stable a t  transonic speeds. 

A t  transonic speeds longitudi- 

Lateral-directional data f o r  transonic speeds were not obtained for  
e i the r  of the trimmed configurations. 
clean configuration i n  combination with various individual controls and 
are  presented i n  tab les  I and V. For comparison with the character is t ics  
of the trimmed Configurations, lateral-directional character is t ics  of the 
clean configuration are a l so  indicated i n  f igure 24. It is  observed t h a t  
t he  trimmed configurations were generally somewhat more stable than the 
clean configuration a t  supersonic speeds. 
the  data  of tab le  V indicate t h a t  the la teral-direct ional  i n s t a b i l i t y  near 
Mach number 1.0 previously noted f o r  the clean configuration pe r s i s t s  when 
the individual controls are added. 

However, data  were obtained fo r  the  

Also, it should be noted tha t  

Performance.- T r i m  l i f t  coefficients and l i f t -drag  r a t i o s  are shown 
i n  f igure 25. 
developed trim l i f t -drag  r a t io s  within 3 percent of the maximum l i f t -drag  
r a t i o  of the configuration. A t  supersonic speeds the  configuration fo r  
large-angle trim developed trim lift coefficients within 5 percent of the 
maximum l i f t  coefficient of the configuration. For subsonic and transonic 
speeds the  trim l i f t -drag  r a t io s  from the  present tes ts  were somewhat 
below the  maximum values (cf .  clean configuration, f i g .  19) . 
parison, data from reference 11 are shown f o r  a similar configuration 

A t  supersonic speeds the configuration fo r  small-angle t r i m  

For com- 
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representative of the landing condition. 
as f o r  the small-angle trim condition of the present t e s t s ,  but the p i tch  
f laps  were re t rac ted  and a trailing-edge f l ap  was added. 

I n  summary, a t  supersonic speeds the present configuration developed 
l i f t -drag r a t i o s  almost equal t o  those of the modified 13' half-cone from 
which it was derived and, i n  addition, provided f o r  t r i m  t o  nearly maximum 
l i f t .  The t r i m  l i f t -drag  r a t i o  of 1 .2  i s  equivalent t o  about 900 naut ical  
miles l a t e r a l  range f o r  entry from a near ear th  s a t e l l i t e  o rb i t  ( r e f .  7 ) .  

Here the elevons were a t  -loo, 

SUMMARY OF RESULTS 
A 
4 
a 
6 

The aerodynamic charac te r i s t ics  of an atmosphere-entry configuration 
developing l i f t - d r a g  r a t i o s  near 1 . 2  a t  supersonic speeds were experimen- 
t a l l y  investigated a t  Mach numbers from 0.6 t o  5.0. The basic  configura- 
t i on  was one-half of a 13' half-angle cone with a blunted nose and a 
boattailed af terport ion t o  which were added a canopy and a p a i r  of ve r t i ca l  
s tabi l iz ing f in s .  Controls consisting of elevons, p i t ch  f laps ,  and yaw 
f laps  were a l s o  t e s t ed  with the basic configuration. Moments were referred 
t o  a point 0.55 body length a f t  of the nose and 0.07 body length below the 
cone axis. 

The bas ic  Configuration without controls was longi tudinal ly  s tab le  
near maximum l i f t  coeff ic ient  a t  supersonic speeds, and was s l i g h t l y  
unstable a t  lower l i f t  coeff ic ients  over the  en t i r e  range of t e s t  Mach 
numbers. For most of the t e s t  Mach numbers, subsonic and supersonic, the 
configuration was d i rec t iona l ly  and l a t e r a l l y  s tab le .  Near a Mach number 
of 1.0, direct ional  and l a t e r a l  i n s t a b i l i t i e s  were observed a t  small angles 
o f  sideslip; however, the moment curves were nonlinear and s tab le  
character is t ics  prevailed a t  s ides l ip  angles grea te r  than about 52'. 

The configuration complete with controls w a s  t e s t ed  with two d i f fe ren t  
combinations o f  elevon and p i tch  f lap  angles a t  supersonic speeds t o  demon- 
s t r a t e  trim charac te r i s t ics  a t  widely d i f f e ren t  a t t i t udes .  
configurations resul ted i n  a t r i m l i f t - d r a g  r a t i o  of 1 .2  a t  a Mach number 
of  5.0 ,  which was within 5 percent of the maximum l i f t -drag  r a t i o .  
second configuration resul ted in  a trim l i f t  coeff ic ient  of 0.45 a t  a Mach 
number of 5.0, which was within 5 percent of the  maximum l i f t  coeff ic ient .  
In  general, a combination of elevons and p i t ch  f l aps  appeared adequate t o  
provide trim a t  posi t ive lift coeff ic ients  with longi tudinal  s t a b i l i t y  
throughout the Mach number range of the  t e s t s .  

One of these 

The 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f . ,  April  26, 1961 



. APPENDIX 

TRANSONIC AFRODYNAMIC CHARACTERISTICS 

OF A MODIFIED 1 3 O  HALF-CONE 

Preliminary t o  the t e s t ing  of the boa t ta i led  configuration decribed 
i n  the  body of t h i s  paper, a blunted 13' half-cone w a s  t e s t ed  a t  super- 
sonic speeds ( r e f .  8) and a t  subsonic speeds ( r e f s .  9 and lo) . 
charac te r i s t ics  a t  supersonic speeds of  a modified version of t h i s  half- 
cone were investigated in  reference 8. During the  present investigation 
the modified 13' half-cone w a s  t es ted  a t  transonic speeds i n  the Ames 
2- by 2-Foot Wind Tunnel, and the  results o f  these t e s t s  a r e  presented 
herein.  Experimental technique and t e s t  conditions were ident ica l  with 
those described in  the body of t h i s  paper. 
a r e  shown i n  f igures  26 and 27. 
presented i n  f igure 28 and tab le  V I .  

Also, the  

Model geometry and photographs 
Results i n  standard coeff ic ient  form are  

. 
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12.3 
15.4 

A 
4 
8 
6 
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.005 -.m .013 -.006 -.003 .mi .mi  ,002 
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.005 .007 -.007 -.K% ,001 - - - - - - - - - 
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TABLE 11.- IN'C-a FORCE AND MOMENT COEFFICIE.NTS DUE TO BOTH P I T C H  
FLAPS 

~~ 

' itch f l a x  
.ef l ec t ion  

leg I 

I I  1 I I I I I I 
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TABLE 111.- INC-AL FORCE AND MOMENT COEFFICIENTS DUE TO A STARBOARD 

YAW FLAP 

M-0.6 M-0.9 
Control a, 

M-1.0 M - 1 . 1  M-1.3 M-3.0 M4.0 W5.O 

Leflcction aeg 
ACA 

by’300 

1 

0.1 0.024 0.023 0.024 0.027 0.018 0.005 0.005 0.005 
4.1 ,023 ,018 .020 .015 ,015 - - - - - - - - - 
7.2 ,022 .014 .oOg .014 .Ol3 - - - - - - - - - 

.Om 8.2 - - - -  - - - - - - - - - - - - - -  - - 
10.3 .020 ,011 - - - .013 . O E  - - - - - - - - - 

.002 ,002 .003 w . 3  - - - - - - - - - - - - - - 
14.4 .OB .021 -.W ,007 .On - - - - - - - - - 

.003 - - - .o& 16.4 - - - - - - - - - - - - - - - 
.1 .036 .033 -.001 .045 ,027 - - - - - - - - - 

4.1 .035 .028 .Cd+ .027 .025 .011 .& .010 
7.2 .Mg .030 ,005 .024 .025 - - - - - - - - - 

.011 .& ,010 8.2 
10.3 .028 .011 -.& .023 .023 - - - - - - - - - 

,005 .007 .a 12.3 - - - - - - - - - - - - - - - 
14.4 ,026 .016 -.015 .016 .021 - - - - - - - - - 

.005 - - - .010 16.4 - - - - - - - - - - - - - - - 

- - - - - - - - - - - - - - - 

ay=300 

.1 ,019 ,044 .016 ,020 .016 - - - - - - - - - 
4.1 ,017 ,021 ,023 .MO .015 .& ,003 .o& 
7.2 .016 .020 .029 ,017 ,015 - - - - - - - - - 

,004 8.2 - - - - - - - - - - - - - - - - - - - - 
10.3 .014 ,038 - - - ,017 .Ow - - - - - - - - - 
12.3 - - - - - - - - - - - - - - - .007 .003 ,005 
14.4 ,015 ,044 .033 .022 .C& - - - - - - - - - 

,006 - - - ,005 16.4 - - - - - - - - - - - - - - - 
.1 ,032 ,044 ,033 ,033 ,030 - - - - - - - - - 

4.1 ,030 ,042 .043 .030 .028 .015 .013 ,011 
7.2 ,029 ,045 . o b  ,030 . e 8  - - - - - - - - - 

,013 ,013 . O E  8.2 - - - - - - - - - - - - - - - 
10.3 .024 ,042 ,033 ,036 ,020 - - - - - - - - - 

.015 ,013 ,013 12.3 - - - - - - - - - - - - - - 
14.4 ,026 ,053 ,040 .035 . O E  - - - - - - - - - 

,014 - - - .014 16.4 - - - - - - - - - - - - - - - 

12.3 
14.4 
16.4 

-.013 -.OU -.OIL? - - - - - - - - - - - - - - - 
-.& -.056 -.036 - a 8  -.023 - - - - - - - - - 

- .oi l  - - - -.013 - - - - - - - - - - - - - - - 
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TABLE V.- LATERAL-DIRECTIONAL CHARACTERISTICS ?XI%% A MACH ?mER OF 1 

Conf igu ra t ion  

Clean;  

e l e v o n s  o f f  
6p=O0, 6p=Oo, 

Clean;  one 
elevon;  
6e=100 

Clean;  one 
elevon;  
6,=-10° 

Cle&?; one 
elevon;  
6,=-30° 

Clean;  one 
yaw f l a p  

Sy=200 

C l e a n ;  one 
yaw f h p  

%=30° 

0 

- 
5 
4 
3 
2 
1 
0 

-1 
-2 
-3 
-4 
-5 
-5 
-4 

- 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 

-5 
-4 

- 

-3 -3 

-1 
0 
1 
2 
3 
4 
5 
5 
4 
- 

3 
2 
1 
0 

-1 
-2 
-3 
-4 
-5 - 
5 
3 
2 
1 
0 

-1 
-2 
-3 
-h 
-5 - z 
3 
2 
1 
0 

-1 
-2 
-3 
-4 
-5 

~ ~- 

MQ.9; -14.4 1 MX1.0; U q . 1  I M=1.0;  P 7 . 2  

0.W37 - .0714 
-.0493 - .M87 
-.owe 
.m2 
.OM7 
.0178 
.0382 
.0589 
.0803 

- .0359 - .0147 
.oo$ 
.M20 
.0355 
.0377 
.0588 
.@Ob 

- 

.io09 

.m8 

.1445 
- .1159 - .0952 - .O695 

- a 8 7  - .0089 
.0089 
.moo 

- 

- n L y  

.0171 

.0389 

. 6 2 0  m - .0752 
-.0543 - .030! 
- .Olio 

.0060 
-.&5 

.Ol27 

.0352 

.0569 

.0793 
-.0840 - . 6 1 4  
- .Ob05 - .0183 . OM5 
.M10 
.M84 
.0382 
.0585 
.0778 
.1CQ5 - ,0710 

-.0483 - .M57 - .0&5 
.0162 
.0361 

.0719 

.Wl5 . n 5 7  

- 

.0397 
* 0519 

I I 
I I I I I I 

, I 

I I I I I I 

C l  

0.01121 
- .00568 
-.ooo86 

.00335 

.00843 

.00761 

.OOlj3 - .om17 

.00150 

.007W 

.01175 

.02101 

.02490 

.02788 

.02955 

.02254 

.02167 

.02271 

.M925 

.03393 

.03841 

m 

- .01991 - .01350 - .00805 
nn-cr, - . Y Y L / ,  

.mi63 

.00072 - .00222 
- .00391 
- .00275 

.00347 . OW70 

.00397 

.00954 

.01482 

.02075 

.a2575 

.02612 

.02031 

.01916 

.01952 

.02310 

.CY2780 

- .OM48 

.&23 

.01362 

.00485 

.00612 

- .COT90 

.00277 

.01340 

.00742 

.01045 

.014'+4 

- .OM77 
=EE 

.OM75 

. m 4 5  

.01332 

.01563 

.ox98 

.00666 

.00978 

.01838 

.014l2 

M=l.O; ~ 1 4 . 4  

CY - 
3.1033 
- .0804 
- .0564 - .0328 - . o n 0  

.0088 

.0268 

.0168 

. a 3 6  

.0662 

.@I3 
T5.3 
-.0310 
-.0074 

.a355 

.M45 

.0184 

.Oh31 

.0692 

.lo12 

.1288 

.1557 
-.1321 
- .io62 
-.call 
- .0326 
- .0102 

.0085 

.0021 
,0226 
.0468 
.0730 - .1110 - -0874 - .O637 

- .0409 - .0189 
.0008 
.0166 
.0179 
.0385 
.0641 
.a397 

-.oglB 

^c-l 
- . " / I T  

- .0723 
-.0509 
- .M35 - .0042 

.0147 

.0254 

.0452 

.0639 

.0845 

.io32 

-e0579 - .O363 
- .0131 

.&3 

.m32 

. 0 3 6  

.0489 

.0702 

.W15 

.1154 
- 

Cn - 
.0030 
.coo1 
.0&7 
.0081 
.0100 
.0104 
.0093 
.0180 
.OW0 
.0049 
.0&7 
.0359 
-0399 
-0437 
.0374 

.0149 

- 

.0369 

.0196 
a 6 0  
. O W  
.Ob94 
.0578 
xG-3 
.0183 
.0135 

.0050 

.0033 

^. -. 
. V L V I  

.om8 

.0261 

.o203 

.0137 

.0042 

.0152 

.0111 

. 0 6 9  

.mu 

.mi8 

.0010 

.0003 

.0184 

.0138 

.0018 

.0017 

.0055 

.W96 

.0131 
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TABLE V I  .- LATERAL-DIRECTIONAL DERIVATIVXS FOR A MODIFIED 13' HALF-CONE 

(c f .  r e f .  8 )  
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(a) Angles, forces, and moments. 

(b) Control def lect ion angles.  

Figure 1 . - Nomenclature. 
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(a> Model 1, t e s t e d  a t  angles of a t t ack  from -4' t o  +20°, 2 = 6 in. 

Figure 3 .- Model photographs. 
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(b> Model 2, t e s t e d  a t  angles of a t t a c k  from 170 t o  3 2 O ,  2 = 3.5 in. 

Figure 3 .- Continued . 
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(c> Model 3, tested at angles of attack from 32' to 5k0,  2 = 3.5 in. 

Figure 3 .- Concluded. 
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(a) Transonic speeds. 

Figure 4 .- Pitching-moment coefficient of the clean configuration 
(%=o, %=o, elevons off). 
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(a) Transonic speeds. 

Figure 5 .- Lift-drag ratio of the  clean configuration 
(%=of Y O ,  elevons of f )  . 
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(a) Transonic speeds. 

Figure 6 .- Lift coefficient of the clean configuration 
( %=o, s,=o, elevons off) . 
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(a) Transonic speeds. 

Figure 7.- D r a g  coefficient of clean configuration 
( %=o, s,=o, elevons o f f )  . 
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(a) Transonic speeds. 

Figure 8 .- Normal-force coefficient of clean configuration 
( $=o, tjY=o, elevons off) . 
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(a) Transonic speeds. 

Figure 9.- Axial-force coefficient of clean configuration 
( %=o, EFO, elevons o f f )  . 
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(a) Transonic speeds. 

Figure 10.- Base-pressure coefficlent of clean configuration 
( $=o, 6y=~, elevons o f f )  . 
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(a) Transonic speeds. 

Figure ll .- Pitching moment of trimmed configurations. 
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Figure 12 .- Lift-drag ratio of trimmed configurations. 
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(a) Transonic speeds. 

Figure 13.- Lift coefficient of trimmed configurations. - 
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Figure 14.- Base-pressure coefficient of trimmed configurations . 
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Side  view. 

Bot tom v ie@ 

(a) Configuration f e r  small-angle t r in:  (~(~14~). 

Figure 15.- Shadowgraphs of  f low a t  M = 5.0.  
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B o t t o m  view. 

(b) Configuration for large-angle t r i m  ( ~ 5 0 ~ ) .  

Figure 15. - Concluded. 
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Figure 16 .- Pitc.---?@-moment coefficient of the clean configurations with 
moment center at X / Z  = 0.45. 
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(b) Variation with Mach number at a, = 7.2'. 

Figure 17.- Lateral-directional characteristics of clean configuration 
($4, 8 y 0 ,  elevons off) . 
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Figure 18.- Lateral-directional characteristics of clean configuration 
at M=l.O, -7.2' (t$=O, S y O ,  elevons off). 
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Figure 20 .- Ty-pical pitch flap characteristics (both flaps deflected) . 
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Figure 21 .- Typical yaw flap characteristics. 

A 
4 

6 
a 



59 

.04 - 

.02 - Impact theory, 

.04 - 

.02 - 

M =  1.3 
0 I 

.04 - 

.02 - 
M =  1.0 

0 

8Y 
0 20° 
0 30° 

.04 . 02  - - b- 
Figure 21 .- Concluded. 



60 

.04 - 

.02 - I 

.o 2 

0 

-.02 

nc 1 
cos s e  "a s e  

0 I O 0  

M =  1.0 0 -30° 
0 

-.02 - sd 

.02 

0 

-.02 

-y M = 0.6 

a = oo - 
Se = -30" 

I I L T  I T T I  
40 -20 20 40 0 

(01 t aa 1, deg 

Figure 22.- mica1 elevon characteristics. 



61 

.04 

.02 

0 

-.02 

A 
4 

6 
a 

- 

- 

M =5.0 9 

0- -- r-. v 

- 

.04 - 

.02 - 

M =  1.3 
0 

-.02 - 

Cn 
.04 r 

M =  1.0 
0 

-02 L 

n h 0 
U 

r-. 

M = 0.6 
0 

I I I 
IO 15 

-.02 L 
0 5 

a, deg 
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Figure 24.- Stabi l i ty  of trimmed configurations. 
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Figure 25 .- Performance of trimmed configurations . 
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Figure 27 .- Photographs of a modified 13 0 half-cone model (cf. ref. 8) . 
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(a) Pitching moment. 

Figure 28 .- Low-speed aerodynamic characteristics of a modified l3O 
half-cone model (cf. ref. 8) . 
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Figure 28. - Continued . 
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